Imbalance 101
Imbalance is a cyclical force caused by a rotating mass. Imagine that you had a small weight, tied to a piece of string, and you swung it in a circle. The force you feel pulling on the string, as it rotates, is centrifugal force. Centrifugal force is calculated using this formula:F = (3.41 x .0001) W x R x n x n
Where: F is force in lbs., n is RPM, W is weight of revolving body, and R is distance from rotating mass to center of mass.
The most important thing to note is how the amount of centrifugal force is related to the rotating speed. The force does not rise proportionally to any increase in speed. It rises as the square of the speed. That means if you have imbalance in your system, the more you increase speed, the damaging force caused by imbalance increases exponentially faster. So, a small amount of imbalance at low speeds can be quite destructive when you reach higher RPMs.
Where Does the High Speed Spindle Imbalance Come From?
There are two sources of imbalance in a high speed spindle: internal and external. Internal sources of imbalance include all rotating components within the spindle design, such as the spindle shaft, drawbar, and locking nuts. External sources include attached tool holders, collets chucks, and cutting tools.Internal Sources of Imbalance
When a high speed spindle is manufactured, all rotating components must be balanced. This is accomplished by using a good design and proper assembly methods. The main spindle shaft is balanced on an (expensive) two-plane balancing machine before assembly, typically by removing material from the rotating shaft. The rotor is placed on the balancer and rotated. Sensors measure the amount of imbalance, in grams, and indicate exactly where excess material must be removed to achieve balance. The ope
In addition, there are bearing locking nuts used on the turning shaft that must also be balanced. The nuts are produced with small tapped holes located around the nut diameter. After assembly, the spindle is set up in a special testing area where the imbalance is measured as the complete spindle is turning. To correct any residual imbalance, small set screws are installed in the locking nuts to offset and correct any imbalance. This is referred to as “trim balancing”. This is typically done on the front and rear of the spindle shaft and is required to achieve overall two-plane spindle balance levels.
Now that we have a nice, smooth-running high speed spindle - the last thing we want to do is ruin it by putting an unbalanced cutter in, right? So how do we avoid that?
External Sources of Imbalance
All modern milling machines have replaceable tooling. It is an unavoidable requirement, even though from a spindle design standpoint, it sacrifices all the balance control you hadHSK tooling is available in many sizes, from HSK25 through HSK100.
Just Exactly How Much Balance Do I need?
When it comes to external sources of imbalance, there are simple solutions, called tool balancers. Many are available today, in all varieties and sizes for both steep taper and HSK versions. Many tool holders can be balanced using adjustable weights. There are also many tooling brands to choose from that maintain good balance without modification such as hydraulic, collet clamp and shrink-fit systems.
So, how much balance is needed? There is an ISO standard, DIN ISO 1940-1 that specifies how much balance is recommended for a given tool holder / cutter combination. It’s a formula that determines, based on a tool holder mass and speed, a Balancing Quality Grade, or “G” value. Basically, if you know the tool holder weight and speed, you can calculate the maximum imbalance allowed (in grams) and correct on your balancing machine until you are within the limits you require. Up till now, a G value of 6.3 has been used as an acceptable value for most high speed cutting applications. However, higher tolerances, and higher spindle speeds sometimes suggest the higher balance levels, such as G2.5, or even G1.0 may be required. A graph showing how different G values relate to spindle speed, and mass, is shown.